Targeting Water Conservation to Households

David E. Rosenberg Department of Civil and Environmental Engineering University of State University Email: david.rosenberg@usu.edu

Findings & Key Recommendations

- Households differ in their abilities to conserve water.
- Targeted campaigns can save significant water and money with reduced effort.
- Target installations of water-efficient appliances to households that will save the most \$\$ and water—households most likely to adopt.

Identifing Households Likely to Adopt

- 1. Indicators—large family size, water appliance use, landscape area, or water use that correlate to water savings.
- 2. Survey—is the household willing to adopt?
- 3. Household visits—observe indicators, estimate potential savings, suggest actions, motivate...
- 4. Return visits to verify water savings over time.

Estimating a Household's Potential Water Savings

Estimated adoption and water savings for households in Amman, Jordan

Household	Likely	Est. water
conservation	adoption	savings
action	(%)	(% of use)
Low-flow showerhead	38.6%	10.0%
Kitchen faucet aerator	33.8%	6.0%
Dual flush toilet	24.8%	5.0%
Collect rainwater	18.0%	1.8%
Greywater system	19.6%	1.6%
Xeriscape	0.4%	1.0%
Drip irrigate	1.4%	0.6%
Spray nozzle on hose	4.0%	0.5%
Automatic laundry	0.0%	0.0%
Monte-Carlo simulations of 306,000 households		
Current use is 47.4 TAF/year (58.5 MCM/year)		

- 1. Calculate potential savings from household indicators, i.e., Shower Water Savings = (Family size)(Shower freq.)(Shower time)(Current flow rate Low flow rate).
- 2. Optimize to identify the cost-effective mix of public water, alternative supplies, and conservation actions to meet the household's current water needs.

Further Required Work

- Verify that estimated water savings translate to actual savings.
- Monitor if/how appliance uses change after installations.
- Apply and verify for U.S. households in arid regions (with continuous supplies).

Additional Information

- David Rosenberg (2007) "Probabilistic Estimation of Water Conservation Effectiveness." *ASCE-J. of Wat Res Pl & Mngmt.* 133 (1), pp. 39-49.
- David Rosenberg *et al.* (2007) "Modeling Integrated Water-User Decisions in Intermittent Supply Systems." *Water Resources Research.*
- David Rosenberg *et al.* (in press) "Intermittent Water Supplies: Challenges and Opportunities for Residential Water Users in Jordan." *Water International.*
- http://www.engr.usu.edu/cee/faculty/derosenberg/